Simultaneous Intra- and Extracochlear Electrocochleography During Cochlear Implantation to Enhance Response Interpretation

Author:

Sijgers Leanne12ORCID,Pfiffner Flurin12ORCID,Grosse Julian12,Dillier Norbert12,Koka Kanthaiah3,Röösli Christof12,Huber Alexander12,Dalbert Adrian12

Affiliation:

1. University of Zurich, Zurich, Switzerland

2. Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Zurich, Zurich, Switzerland

3. Research and Technology, Advanced Bionics LLC, Santa Clarita, California, United States

Abstract

The use of electrocochleography (ECochG) for providing real-time feedback of cochlear function during cochlear implantation is receiving increased attention for preventing cochlear trauma and preserving residual hearing. Although various studies investigated the relationship between intra-operative ECochG measurements and surgical outcomes in recent years, the limited interpretability of ECochG response changes leads to conflicting study results and prevents the adoption of this method for clinical use. Specifically, the movement of the recording electrode with respect to the different signal generators in intracochlear recordings makes the interpretation of signal changes with respect to cochlear trauma difficult. Here, we demonstrate that comparison of ECochG signals recorded simultaneously from intracochlear locations and from a fixed extracochlear location can potentially allow a differentiation between traumatic and atraumatic signal changes in intracochlear recordings. We measured ECochG responses to 500 Hz tone bursts with alternating starting phases during cochlear implant insertions in six human cochlear implant recipients. Our results show that an amplitude decrease with associated near 180° phase shift and harmonic distortions in the intracochlear difference curve during the first half of insertion was not accompanied by a decrease in the extracochlear difference curve’s amplitude ( n = 1), while late amplitude decreases in intracochlear difference curves (near full insertion, n = 2) did correspond to extracochlear amplitude decreases. These findings suggest a role for phase shifts, harmonic distortions, and recording location in interpreting intracochlear ECochG responses.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3