Localization Performance in a Binaural Real-Time Auralization System Extended to Research Hearing Aids

Author:

Pausch Florian1ORCID,Fels Janina1ORCID

Affiliation:

1. Teaching and Research Area of Medical Acoustics, Institute of Technical Acoustics, RWTH Aachen University

Abstract

Auralization systems for auditory research should ideally be validated by perceptual experiments, as well as objective measures. This study employed perceptual tests to evaluate a recently proposed binaural real-time auralization system for hearing aid (HA) users. The dynamic localization of real sound sources was compared with that of virtualized ones, reproduced binaurally over headphones, loudspeakers with crosstalk cancellation (CTC) filters, research HAs, or combined via loudspeakers with CTC filters and research HAs under free-field conditions. System-inherent properties affecting localization cues were identified and their effects on overall horizontal localization, reversal rates, and angular error metrics were assessed. The general localization performance in combined reproduction was found to fall between what was measured for loudspeakers with CTC filters and research HAs alone. Reproduction via research HAs alone resulted in the highest reversal rates and angular errors. While combined reproduction helped decrease the reversal rates, no significant effect was observed on the angular error metrics. However, combined reproduction resulted in the same overall horizontal source localization performance as measured for real sound sources, while improving localization compared with reproduction over research HAs alone. Collectively, the results with respect to combined reproduction can be considered a performance indicator for future experiments involving HA users.

Funder

FP7 People: Marie-Curie Actions

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3