Sound Localization in Real-Time Vocoded Cochlear-Implant Simulations With Normal-Hearing Listeners

Author:

Ausili Sebastian A.1ORCID,Backus Bradford2,Agterberg Martijn J. H.13,van Opstal A. John1,van Wanrooij Marc M.1ORCID

Affiliation:

1. Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands

2. Oticon Medical, Copenhagen, Denmark

3. Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, the Netherlands

Abstract

Bilateral cochlear-implant (CI) users and single-sided deaf listeners with a CI are less effective at localizing sounds than normal-hearing (NH) listeners. This performance gap is due to the degradation of binaural and monaural sound localization cues, caused by a combination of device-related and patient-related issues. In this study, we targeted the device-related issues by measuring sound localization performance of 11 NH listeners, listening to free-field stimuli processed by a real-time CI vocoder. The use of a real-time vocoder is a new approach, which enables testing in a free-field environment. For the NH listening condition, all listeners accurately and precisely localized sounds according to a linear stimulus–response relationship with an optimal gain and a minimal bias both in the azimuth and in the elevation directions. In contrast, when listening with bilateral real-time vocoders, listeners tended to orient either to the left or to the right in azimuth and were unable to determine sound source elevation. When listening with an NH ear and a unilateral vocoder, localization was impoverished on the vocoder side but improved toward the NH side. Localization performance was also reflected by systematic variations in reaction times across listening conditions. We conclude that perturbation of interaural temporal cues, reduction of interaural level cues, and removal of spectral pinna cues by the vocoder impairs sound localization. Listeners seem to ignore cues that were made unreliable by the vocoder, leading to acute reweighting of available localization cues. We discuss how current CI processors prevent CI users from localizing sounds in everyday environments.

Funder

FP7 People: Marie-Curie Actions

William Demands og Hustra Ida Emilies Fond

H2020 European Research Council

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3