Fire safety study of a perlite concrete chimney and wooden ceilings used in buildings based on experimental tests and CFD analysis

Author:

Drozdzol Krzysztof1ORCID,Kowalski Mateusz2,Kokocinska–Pakiet Elzbieta1,Junga Robert2,Horak Jiri3ORCID

Affiliation:

1. Faculty of Civil Engineering and Architecture, Opole University of Technology, Opole, Poland

2. Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland

3. Centre for Energy and Environmental Technologies, Energy Research Center, VSB - Technical University of Ostrava, Ostrava, Czech Republic

Abstract

The operation of fuel-burning heating equipment results in soot build-up in the flues. Its ignition poses a significant fire risk to the building, as the flue temperature can reach 1000°C. Wooden structural elements located near the chimney (ceilings and roof penetrations) are particularly vulnerable. To date, research has focused on the fire safety of wooden ceiling elements. This is where, due to heat radiation from the chimney, wooden elements significantly increase their temperature and become the location of fire initiation in the buildings. The task of chimney designers is to limit the temperatures of heated wooden building components near these structures. The present work analysed a ceramic and concrete chimney with air space with an innovative perlite concrete casing with a dual-function (load-bearing and thermal insulation). Computational Fluid Dynamics (CFD) analyses verified by a full-scale experiment were conducted to evaluate the fire safety of wooden building ceilings. The tests showed that a high level of safety characterised the chimney under study. The maximum temperature of the casing when testing the soot fire reached 38°C, and the wooden elements simulating the ceiling reached 28°C - this result is almost four times better than the chimney standard requirement. Furthermore, a developed CFD model exhibited high accuracy compared to the experimental results and can be used for designing this type of chimney and other research and expert work, such as that performed after fires in buildings originating from the chimney. Practical Application The article describes CFD analyses and tests of an innovative chimney in a perlite-concrete casing. The described research showed the high safety of such a chimney during soot fires. The results obtained can be used to develop changes in standards to improve the safety of chimneys and design safer and more efficient ones. The author’s chimney model and CFD analysis make it possible to determine the temperatures in the chimney during a soot fire. This CFD model allows you to assess the fire safety of the chimney and the building elements located in its vicinity.

Funder

Opole University of Technology

National Centre for Research and Development

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3