Demand response strategy study of a radiant roof cooling system based on the thermal inertia of the building envelope

Author:

Guo Yidan1,Xia Xueying1ORCID,Wang Zhaotai1,Liu Yuhan1,Li Zhen1

Affiliation:

1. School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing, China

Abstract

There is an imbalance between supply and demand in the power system. Implementing demand response control strategies for air-conditioning systems is beneficial to optimize the allocation of power resources. Here, we use two single strategies and a combination strategy for the radiant roof cooling system: passive energy storage, global temperature reset, and the passive energy storage-global temperature reset combination strategy to implement demand response control, all of which achieve peak load reduction or shifting by changing the indoor controlled parameters. Based on the thermal inertia of the building envelope, we utilize a TRNSYS model to analyze the performance of three demand response strategies of radiant roof cooling systems in terms of thermal comfort, energy consumption, operating costs, and peak load shifting rates. The findings reveal that implementing demand response strategies can reduce the operating energy consumption of radiant roof cooling systems and facilitate peak load shifting. Among them, the combined response strategy shows the best peak load transfer effect, with a transfer rate of 19.84% and a better operating economy. Meanwhile, we find that the outdoor temperature affects the implementation of demand response strategies for the radiant roof cooling system based on the thermal inertia of the building envelope. Practical application The study has significant application value in the following aspects: Implementing a demand response strategy for the radiant roof cooling system, based on the thermal inertia of the building envelope, can reduce operational energy consumption and achieve peak load shifting. This approach effectively addresses the issue of supply-demand imbalance in the power system. The application of the work could facilitate improved operational energy efficiency, contributing to emissions reduction goals and optimizing the use of intermittent renewable energy systems in power grids.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3