Frost suppression performance of an air source heat pump using sensible heat from indoor air to preheat outdoor air

Author:

Wei Peng1,Wang Zhiwei1ORCID,Feng Hengli1,Wang Sheng1,Fan Jufang1

Affiliation:

1. School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi, PR, China

Abstract

Frost forms on the surfaces of air source heat pump (ASHP) outdoor heat exchangers under heating mode in winter, when the surface temperature of the heat exchanger is lower than both 0°C and the ambient dew point temperature. This can reduce the coefficient of performance (COP) and heating capacity of the ASHP unit. A novel ASHP was examined using two rooms with the same size, orientation, and structure. To test the frost suppression performance of the novel system, two ASHPs of the same size and specifications, but one including a sensible-heat preheating device, were placed in the test platform rooms. By comparing and analyzing field-measured parameters such as COP, heat loss, and frost weight of the two ASHP units, the frost suppression performance of the novel ASHP was evaluated in severe, moderate, and mild frost areas. The results show that when the air conditions were −3.9°C and 98.7% in the moderate frost area and 3.2°C and 96.7% in the severe frost area, the novel ASHP showed significantly improved performance. The frost formation time increased from 25 min to 38.5 min, frost-defrost heat loss decreased by 31.6%–43.7%, frost weight decreased 11.8%–17.4%, and COP increased 7.4%–13.1% compared with those of the conventional ASHP. In the low temperature and mild frost area, when the air temperature was −11.8°C and the relative humidity was 88.8%, the frost suppression effect of the novel ASHP was unapparent. Affected by the climate, the operation performance of ASHP will be different. Different ASHP can be used to adapt to the weather in different regions. The novel ASHP can significantly suppress frost and improve the heating performance of the unit in the mild climate and frost serious areas.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3