Derivation of a universal elevator round trip time formula under incoming traffic

Author:

Al-Sharif Lutfi1,Alqumsan Ahmad M Abu1,Khaleel Rasha1

Affiliation:

1. Mechatronics Engineering Department, University of Jordan, Amman, Jordan

Abstract

The design of vertical transportation systems still heavily relies on the calculation of the round trip time (τ). The round trip time (τ) is defined as the average time taken by an elevator to complete a full trip around a building. There are currently two methods for calculating the round trip time: the conventional analytical calculation method and the Monte Carlo simulation method. The conventional analytical method is based on calculating the expected number of stops and the expected highest reversal floor and then substituting the values in the main formula for the round trip time. This method makes some assumptions as to the existence of some special conditions (such as equal floor heights and a single entrance). Where these assumptions are not true in a building, this invalidates the use of the analytical formula the use of which will lead to errors in the result. The conventional analytical equation can be further developed to cover some of the special conditions in the building, but they do not cover all these special conditions and also do not cover combinations of these special conditions. The simplest round trip time equation makes the following assumptions: equal floor heights, a single entrance, equal floor populations and that the rated speed is attained in one floor jump. The case of unequal floor populations can be accounted for by amending the values of the probable number of stops and the highest reversal by using the formulae for the unequal floor population case. The work presented in this piece of work identifies the most important four special conditions (out a total of nine conditions) that are assumed in the classical round trip time analytical equation. It then develops analytical formulae for calculating the round trip time equation for any of the four special conditions or any combination of these conditions under incoming traffic conditions. A numerical example is given and verified using Monte Carlo simulation. Practical application: This piece of work presents new equations that allow the designer to evaluate the value of the round trip time. The equations can deal with special cases such as top speed not attained in one floor journey, multiple entrances, unequal floor heights and unequal floor populations. Once the value of the round trip time is obtained, the elevator system can be designed, providing the required number of elevators, their speed and capacity.

Publisher

SAGE Publications

Subject

Building and Construction

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3