Experimental study of the width effects on self-induced buoyant blow off in upward flame spread over thin fabric fuels

Author:

Zhu Guoqing12ORCID,Gao Yunji123,Chai Guoqiang1,Zhou Jinju12,Gao Shuai12

Affiliation:

1. School of Safety Engineering, China University of Mining and Technology, PR China

2. Fire Fighting and Rescue Technology Key Laboratory of MPS, PR China

3. Department of Fire Protection Engineering, Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, PR China

Abstract

In this paper, a series of upward flame spreading experiments were conducted on thin flax fabric with various widths ranging from 3.0 to 8.0 cm and length of 1.6 m. Symmetric ignition at the entire bottom edge of samples led to two-sided upward flame growth initially. A very interesting behavior of flame blown off was observed in upward flame spreading and an explanation was provided based on the increased buoyancy-induced velocity at the flame base. When the sample width is 6 cm or less, the flame length increases to a critical value and, correspondingly, the buoyancy-induced velocity reaches the blow off velocity, which results in a flame being blown off on one side. The remaining flame on the other side would shrink in length and propagate to the end of the sample with an asymptotically constant length and steady spread rate. For samples wider than 6 cm, the two-sided flame continues to spread to the end of samples and the self-induced blow off phenomenon is not observed. Moreover, the width effects on the flame height, flame thickness and flame spread rate are analyzed and explained in this paper. The results of this study may help advance better understanding of flame blow off behaviors over solid surfaces and have implications concerning fire control of flame spread over solid fuels.

Funder

National Key Research and Development Plan

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3