Affiliation:
1. Henan University of Engineering, China
2. Jiangnan University Wuxi, China
Abstract
Graphene conductive polyacrylonitrile (PAN) substrate is an important material, owing to its high strength, flexibility, and comfort. In this work, a PAN fabric was cationized with triethylene tetramine (TETA) for increased adsorption of anionic graphene oxide (GO), which mainly forms ionic bonds. The TETA-modified PAN (Amino-PAN) fabric was then treated with GO using a dipping method followed by in situ reduction of GO to obtain reduced graphene oxide (RGO). The electric conductivity of Amino-PAN fabrics was increased with the increasing of TETA modification temperature from 90°C to 110°C. A surface electric resistance of 0.61 kΩ cm−1 was obtained for 2 g L−1 GO and TETA modification performed at 110°C for 2 h. This resistance was considerably lower than that of the original PAN fabric for one cycle of the dipping–reduction GO treatment (1RGO-PAN, 42.69 kΩ cm−1) and six cycles of the dipping–reduction GO treatment (6RGO-PAN, 1.52 kΩ cm−1). The results revealed that the anionic GO was more easily adsorbed on the surface of the Amino-PAN fabrics than on the original PAN fabrics. The surface electric resistance of the 1RGO-Amino-PAN fabrics slightly increased from 0.61 to 0.79 kΩ cm−1 after 30 washing cycles. The results showed that the RGO-coated Amino-PAN fabric had excellent washability. Furthermore, the TETA modification process reduced the dipping–reduction times of the GO finishing PAN fabrics, and can be easily used in the production of RGO-based flexible conductive material.
Funder
the key scientific research project in 2018 of Henan province education department
the open project program of key laboratory of eco-textiles, ministry of education, Jiangnan University
the PhD foundation project in 2018 of Henan University of Engineering
the science and technology development project in 2020 of Henan province
the young teachers foundation of institution of higher learning in Henan province
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献