Fabric wrinkle level classification via online sequential extreme learning machine based on improved sine cosine algorithm

Author:

Zhou Zhiyu1ORCID,Zhang Ruoxi1,Zhang Jianxin2,Wang Yaming1,Zhu Zefei3,Liu Chengxia4

Affiliation:

1. School of Information Science and Technology, Zhejiang Sci-Tech University, China

2. The Research Centre of Modern Textile Machinery Technology, Zhejiang Sci-Tech University, China

3. School of Mechanical Engineering, Hangzhou Dianzi University, China

4. Fashion Academy, Zhejiang Sci-Tech University, China

Abstract

Because it is difficulty to classify level of fabric wrinkle, this paper proposes a fabric winkle level classification model via online sequential extreme learning machine based on improved sine cosine algorithm (SCA). The SCA has excellent global optimization ability, can explore different search spaces, and effectively avoid falling into local optimum. Because the initial population of SCA will have an impact on its optimization speed and quality, the SCA is initialized by differential evolution (DE) to avoid local optimization, and then the output weight and hidden layer bias are optimized; that is, the improved SCA is used to select the optimal parameters of the online sequential extreme learning machine (OSELM) to improve the generalization performance of the algorithm. To verify the performance of the proposed model DE-SCA-OSELM, it will be compared with other algorithms using a fabric wrinkles dataset collected under standard conditions. The experimental results indicate that the proposed model can effectively find the optimal parameter value of OSELM. The average classification accuracy increased by 6.95%, 3.62%, 6.67%, and 3.34%, respectively, compared with the partial algorithms OSELM, SCAELM, RVFL and PSOSVM, which meets expectations.

Funder

NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization

Science Foundation of Zhejiang Sci-Tech University

Zhejiang Provincial Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3