Soft robotic fabric design, fabrication, and thermoregulation evaluation

Author:

Cui Yan12ORCID,Liu Xiaogang2,Fan Jintu13ORCID,Shou Dahua13

Affiliation:

1. Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, United States

2. Fashion and Art Design Institute, Donghua University, China

3. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Abstract

Usually, traditional insulation materials have a constant thermal resistance value that cannot change within the ambient temperature and will decrease as ambient humidity or external stress increases. Humans heavily rely on heating, ventilation, and air conditioning (HVAC) systems to meet the thermal comfort requirements of their bodies, giving rise to energy waste and global warming. As an infinitely available natural resource, air is one of the most efficient thermal retaining substances known to science. Inspired by soft pneumatic robotics, we propose an architecture for air-driven thermoregulation fabrics called soft robotic fabrics (SRF). By changing the thickness of trapped air layer in fabric system through SRF, wearers could modify garments’ thermal insulation performance. A fabrication method is introduced to rapidly manufacture low-cost pneumatic structures using various types of construction and dimensions. With excellent ductility, elasticity, and compression resistance, the thickness of SRF increases by 12 times or more after inflation, and the fabric even can lift an object 270 times heavier than its weight. The excellent deformability can effectively increase stable air layer between clothing and skin. Based on the Predicted Mean Vote–Predicted Percentage of Dissatisfied model, the thermoregulation capability of SRF helps HVAC expand the temperature setpoint range by 3–8 times when compared with traditional fabrics, and has far-reaching significance in saving energy.

Funder

Donghua University

China Scholarship Council

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3