Affiliation:
1. Southern Regional Research Center, New Orleans, Louisiana 70179, U.S.A.
Abstract
Cotton printcloth was treated with low-temperature, low-pressure argon plasma created by passing argon gas through a radiofrequency electric field of 13.56 MHz. Fabrics were exposed to plasma for 0–90 min. Pressure was maintained at 100 millitorrs and RF power at 40 watts. Plasma-treated cottons wetted readily and uniformly with water and aqueous dye solutions. Loss of weight on relatively long plasma treatment was greater than that due to usual removal of moisture under reduced pressure. Spectral changes observed by x-ray photoelectron-emission spectroscopy and infrared spectroscopy indicated surface oxidation of the cotton, and electron-spin-resonance spectra showed presence of free radicals. Although surface oxidation occurred, gross topographical changes of the cotton surface were not evident, even when viewed under the scanning electron microscope. The rate of wetting of argon-activated cotton was significantly greater than it was prior to plasma treatment. At comparable immersion times the amount of water wicked into an argon-activated cotton fabric was about twice that taken up by untreated material. The rate of drying was also faster after plasma treatment.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献