The Effect of Argon Cold Plasma on Water Absorption of Cotton

Author:

Jung H. Z.1,Ward T. L.1,Benerito R. R.1

Affiliation:

1. Southern Regional Research Center, New Orleans, Louisiana 70179, U.S.A.

Abstract

Cotton printcloth was treated with low-temperature, low-pressure argon plasma created by passing argon gas through a radiofrequency electric field of 13.56 MHz. Fabrics were exposed to plasma for 0–90 min. Pressure was maintained at 100 millitorrs and RF power at 40 watts. Plasma-treated cottons wetted readily and uniformly with water and aqueous dye solutions. Loss of weight on relatively long plasma treatment was greater than that due to usual removal of moisture under reduced pressure. Spectral changes observed by x-ray photoelectron-emission spectroscopy and infrared spectroscopy indicated surface oxidation of the cotton, and electron-spin-resonance spectra showed presence of free radicals. Although surface oxidation occurred, gross topographical changes of the cotton surface were not evident, even when viewed under the scanning electron microscope. The rate of wetting of argon-activated cotton was significantly greater than it was prior to plasma treatment. At comparable immersion times the amount of water wicked into an argon-activated cotton fabric was about twice that taken up by untreated material. The rate of drying was also faster after plasma treatment.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Reference6 articles.

1. The formation of thin polymer films in the gas discharge

2. Applications of Infrared Absorption Spectroscopy to Investigations of Cotton and Modified Cottons

3. O'Connor R. T., Instrumental Analysis of Cotton Cellulose and Modified Cotton Cellulose, Marcel Dekker, Inc., New York, 1972, pp. 10–11, 441–443.

4. Electron spectroscopy (ESCA) for analysis of cellulose anion exchangers

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3