Three-dimensional fluid-structure interaction simulations of a yarn subjected to the main nozzle flow of an air-jet weaving loom using a Chimera technique

Author:

Delcour Lucas1ORCID,Peeters Jozef2,Degroote Joris13

Affiliation:

1. Department of Flow, Heat and Combustion Mechanics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium

2. Picanol NV, Ieper, Belgium

3. Flanders Make, Belgium

Abstract

In air-jet weaving looms, the main nozzle pulls the yarn from the prewinder by means of a high velocity air flow. The flexible yarn is excited by the flow and exhibits high amplitude oscillations. The motion of the yarn is important for the reliability and the attainable speed of the insertion. Fluid-structure interaction simulations calculate the interaction between the air flow and the yarn motion and could provide additional insight into yarn behavior. However, the use of an arbitrary Lagrangian–Eulerian approach for the deforming fluid domain around a flexible yarn typically results in severe mesh degradation, vastly reducing the accuracy of the calculations or limiting the physical time that can be simulated. In this research, the feasibility of using a Chimera technique to simulate the motion of a yarn interacting with the air flow from a main nozzle was investigated. This methodology combines a fixed background grid with a moving component grid deforming along with the yarn. The component grid is, however, not constrained by the boundaries of the flow domain allowing for large deformations with limited mesh degradation. Two separate cases were investigated. In the first case, the yarn was considered to be clamped at the main nozzle inlet. For the second case, the yarn was allowed to move axially as the main nozzle pulled it from a drum storage system.

Funder

Bijzonder Onderzoeksfonds

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3