Dry Jet-Wet Spinning of Cellulose/N-Methylmorpholine N-oxide Hydrate Solutions and Physical Properties of Lyocell Fibers

Author:

Kim Dong Bok1,Pak James Jungho1,Jo Seong Mu,Lee Wha Seop2

Affiliation:

1. School of Electrical Engineering, Korea University, Anam-Dong, Sungbuk-ku, Seoul 136-791, South Korea

2. Polymer Hybrid Center, Korea Institute of Science and Technology, Seoul 136-791, South Korea

Abstract

In dry jet-wet spinning of a cellulose/ N-methylmorpholine N-oxide hydrate solution, the effects of the hydration number n in NMMO hydrates and the concentration and molecular weight of cellulose are investigated in terms of the physical properties of the fibers. Dry jet-wet spinning of lyocell fibers is also investigated using three different set-ups; a piston type, an N2 gas pressure type, and spinning equipment with an extruder. The effects of spinning conditions such as the spin draw ratio, air gap distance, and composition of the coagulation bath are investigated. The physical properties of the fibers such as birefringence, initial modulus, and tensile strength increase with a decrease in n and an increase in the air gap distance and spin draw ratio. The relationship between the physical properties and the fiber denier is newly suggested in this spinning system. The tensile fracture morphology reveals that fibers from the NMMO hydrate containing less water have more fibrils due to their higher molecular orientation. Further, the orientation structure of the cellulose becomes more noticeable with the decreased hydration levels of the solvent because it produces thicker and longer fibrils when the cellulose fibers are treated with an ultrasonic generator. The crystallite size of the cellulose depends on the composition of NMMO in the coagulation bath. The crystallite size also decreases with the increased air gap distance.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3