Rapid identification of plant- and chemical-dyed cotton fabrics using the near-infrared technique

Author:

Li Mingxia12,Han Guangting12ORCID,Jiang Wei12,Zhou Chengfeng12,Zhang Yuanming12,Wang Sishe3,Su Jianjun3,Li Xianbo12ORCID

Affiliation:

1. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, China

2. College of Textile & Clothing, Qingdao University, China

3. Dezhou Hengfeng Textile Co., Ltd, China

Abstract

Plant dye is a promising dyestuff to be used in textiles due to its unique environmental compatibility. However, currently there is no effective method for the identification of plant-dyed and chemical-dyed textiles. In this study, near-infrared (NIR) spectroscopy combined with three kinds of pattern recognition methods, namely soft independent modeling of class analogy (SIMCA), partial least squares (PLS) regression and principal component regression (PCR), were applied to identify cotton fabrics dyed with plant and chemical dyes. A total of 336 plant dye and chemical dye dyed cotton fabrics were prepared and the NIR spectra were collected; 267 samples were used as the calibration set, while the remaining 69 samples were used as the validation set. After pretreatment with the Savitzky–Golay first derivative, the calibration model was constructed. In the SIMCA model, the correct recognition rate values of the calibration and prediction sets were 100% and 98.55%, respectively. The PLS model showed that the number of principal components (PCs) and the correlation coefficient ( R2) were 8 and 0.9978, respectively, and the results of PCR were PC = 10, R2 = 0.9937. Both methods were satisfactory for the predicted results. The overall results indicated that NIR spectroscopy could be used for rapid and nondestructive identification of plant-dyed cotton fabrics and chemical-dyed cotton fabrics.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Natural Science Foundation of Shandong Province

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3