Polyurethane shape memory filament yarns: Melt spinning, carbon-based reinforcement, and characterization

Author:

González Judit123ORCID,Ardanuy Mònica1ORCID,González Marta3,Rodriguez Rosa2,Jovančić Petar24

Affiliation:

1. Departament de Ciència i Enginyeria de Materials (CEM), Universitat Politècnica de Catalunya (UPC), Spain

2. Eurecat, Unitat de Teixits Funcionals, Spain

3. Elisava, Barcelona School of Design and Engineering (UVic-UCC), Spain

4. Textile Engineering Department, University of Belgrade, Serbia

Abstract

The aim of this work was to develop and characterize polyurethane-based shape memory polymer filament yarns of a suitable diameter and thermo-mechanical performance for use in tailored multi-sectorial applications. Different polymer compositions – pure shape memory polyurethane and shape memory polyurethane composites with 0.3 and 0.5 wt.% of multi-walled carbon nanotubes or carbon black as additives – were studied. Filaments were obtained using a melt spinning process that allowed the production of the permanent and temporary shape of the shape memory polyurethane filament. Two drawing speeds (20 and 32 m/min) were studied. Characterization techniques such as the tensile test, differential scanning calorimetry, and dynamic mechanical analysis were used to investigate the shape-memory effect of the filaments. Pure and additive shape memory polyurethane filament yarns of a controlled diameter were produced. The results indicated that the pure shape memory polyurethane on the temporary shape had the highest tensile strength (234 MPa). Filaments with carbon black revealed a significant strain (335%) in the permanent shape with respect to the other filaments. The melt spinning process influenced the soft segment glass transition temperature (Tgs) significantly, with a decrease in the temporary shape (first heating) as compared to the permanent shape (second and third heating). However, only the 0.5% multi-walled carbon nanotubes additive clearly influenced the filament, increasing the Tgs by 10°C. The additives also influenced the shape-memory effect, obtaining an increased fixity ratio (up to 97%) with the multi-walled carbon nanotubes additive and an increased recovery ratio (up to 86%) with the carbon black additive.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3