Investigation of the influence of high molecular weight polyethylene and basalt content used in three-dimensional weft-knitted fabrics on the mechanical risks

Author:

Krauledaitė Julija1ORCID,Ancutienė Kristina1,Krauledas Sigitas2,Urbelis Virginijus3,Sacevičienė Virginija45

Affiliation:

1. Department of Production Engineering, Kaunas University of Technology, Lithuania

2. Center for Physical Sciences and Technology, Lithuania

3. Department of Product Development, Granberg AS, Norway

4. Research Laboratory, UAB Granberg LT, Lithuania

5. Kaunas University of Technology, Lithuania

Abstract

This study investigates the resistance of three-dimensional (3D) weft-knitted fabrics to mechanical risks in order to determine the impact of the percentage content of raw materials in the knits on mechanical loads. For this purpose, 3D weft-knitted fabrics, consisting of a front side, binding, and back side layers, were designed and produced on an E20 circular weft-knitting machine using organic multifilament yarns (high molecular weight polyethylene, HMWPE) and inorganic multifilament (basalt, BS) yarns for the front and back side layers and conventional polyamide yarns for the binding layer. The cut, puncture, abrasion, and tear resistance tests were performed to assess the resistance of 3D weft-knitted fabrics to mechanical risks. According to the testing results, basalt in the structure of 3D weft-knitted fabrics significantly increases the cut resistance, even in cases of a small basalt content in the knit. The puncture, abrasion, and tear resistance testing results showed that the highest HMWPE percentage content in the knitted structure provided the highest resistance to these risks, while increasing the basalt content in the knit did not improve the resistance testing results. Based on the testing results and the assessment of the protection levels provided by the knitted fabrics, the conclusion can be made that the use of HMWPE multifilament yarns and basalt multifilament yarns in the structure of 3D weft-knitted fabrics contributes to the achievement of the highest levels of performance. All the designed 3D weft-knitted fabrics provide complex protection against different mechanical risks (cut, puncture, abrasion, tear). The tests performed may be useful for further development of knitted fabrics designed to provide protection against mechanical risks.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3