The fire retardant properties and pyrolysis mechanism of polysulfonamide (PSA) fibers

Author:

Zhang Xiansheng1,Tang Xiaoning1,Wang Ran2,Wang Rui2,Yan Xiong1,Shi Meiwu13

Affiliation:

1. Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China

2. School of Material Science and Engineering, Beijing Institute of Fashion Technology, China

3. The Quartermaster Equipment Research Institute of Logistical Support Department, Beijing, China

Abstract

In the present work, the fire retardant properties and pyrolysis mechanism of polysulfonamide (PSA) fibers were investigated by cone calorimetry, scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and pyrolysis-gas chromatography-mass spectrometry. The fire retardant behaviors were reflected by the cone calorimeter data under heat fluxes of 35, 50, and 75 kW/m2. This demonstrated that, when exposed to higher heat flux, PSA fibers were ignited easier and burned more completely, indicated by lower time to ignition and higher peak heat release rate. It was further confirmed from the morphology of the residual chars that the original fiber shape can be kept at lower heat flux, but it changed into coherent carbonaceous chars with holes at higher heat flux. In comparison of the FTIR spectra of raw fibers with residual chars, it was noticed that upon heating, the amide linkage was more liable to be broken than that of sulfone groups. Additionally, with elevated heat flux, most of the absorption bands vanished and transformed into the typical feature of carbonaceous material. The pyrolysis products showed that some volatile products with small molecular weight, such as benzene, benzonitrile, and aniline, can be created at high temperature, which can be easily ignited. With this research, the fire retardant properties of PSA fibers are revealed and the corresponding pyrolysis mechanism is proposed, which can guide its application in practice.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3