Affiliation:
1. Department of Fiber and Polymer Science, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, Korea
Abstract
A new quantitative method to evaluate seam pucker with five shape parameters is proposed using three-dimensional image analysis and artificial intelligence. The shape parameters include the number of wave generating points, the wave amplitudes, and the wavelengths on the line next to the seam and on the edge line. Measured shapes of puckered fabrics are converted into numerical data in the three-dimensional coordinate system, and the data are transformed into power spectra using fast Fourier transformation. Also, artificial intelligence techniques, including neural networks and fuzzy logic (or neurofuzzy algorithm), are used to recognize the characteristics of seam pucker. To obtain better quantitative evaluations of seam pucker, 300 neurofuzzy engines are constructed and trained using reference puckered shapes produced by the simulator described in Part I. Power spectra of the measured data are transformed into specified fuzzy patterns through the fuzzification process to train the neurofuzzy engines. The five shape param eters of puckered shapes are obtained from pattern recognition by the trained neurofuzzy engines through the defuzzification process.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献