A defect detection method for unpatterned fabric based on multidirectional binary patterns and the gray-level co-occurrence matrix

Author:

Li Feng1,Yuan Lina1ORCID,Zhang Kun1,Li Wenqing1

Affiliation:

1. School of Computer Science and Technology, Donghua University, China

Abstract

A new texture-feature description operator, called the multidirectional binary patterns (MDBP) operator, is proposed in this paper. The operator can extract the detailed distribution of textures in local regions by comparing the differences in the gray levels between neighboring pixels. Moreover, the texture expression ability is enhanced by focusing on the texture features in the linear neighborhood of the image in multiple directions. The MDBP operator was modified by introducing a “uniform” pattern to reduce the grayscale values in the image. Combining the “uniform” MDBP operator and the gray-level co-occurrence matrix, an unpatterned fabric-defect detection scheme is proposed, including texture-feature extraction and detection stages. In the first stage, the multidirectional texture-feature matrix of a nondefective fabric image is extracted, and then the detection threshold is determined based on the similarity between the feature matrices. In the second stage, the defect is detected with the detection threshold. The proposed method is adapted to various grayscale textile images with different characteristics and is robust to a wide variety of image-processing operations. In addition, it is invariant to grayscale changes, performs well when representing textures and detecting defects and has lower computational complexity than other methods.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobile-YOLO: An accurate and efficient three-stage cascaded network for online fiberglass fabric defect detection;Engineering Applications of Artificial Intelligence;2024-08

2. A new surface roughness measurement method based on QR-SVM;The International Journal of Advanced Manufacturing Technology;2024-06-19

3. YOLOvT: CSPNet-based attention for a lightweight textile defect detection model;Textile Research Journal;2024-01-19

4. Study on Analysis of Defect Identification Methods in Manufacturing Industry;Communications in Computer and Information Science;2024

5. Fabric Defect Detection Method Using SA-Pix2pix Network and Transfer Learning;Applied Sciences;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3