I-fiber implantation robot for composite parts

Author:

Chen Xiaoming123ORCID,Yao Tianlei13,Li Chenyang23,Wei Yuying13,Li Jiao13,Zheng Hongwei23,Ren Zhipeng23,Chen Li13

Affiliation:

1. School of Textile Science and Engineering, Tiangong University, Tiangong University, PR China

2. School of Mechanical Engineering, Tiangong University, Tiangong University, PR China

3. Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, PR China

Abstract

I-fiber implantation is a new stitching technology that can effectively enhance the interlayer performance of laminated composites. This paper presents and evaluates the design and implementation of the I-fiber robot implantation system integrated for producing high-performance fiber preforms for advanced composites. The system was constructed and validated through I-fiber robot implantation experimentation. It was demonstrated that automated I-fiber implantation could be achieved by use of an industrial robot. The programming method and computer-aided manufacturing software of the I-fiber implantation robot were feasible and effective. The double-cantilever-beam (DCB) experiments showed that the implantation of I-fiber significantly improved the interlaminar fracture toughness of the laminated composite, where the maximum load value increased by up to 106%. The DCB load–displacement curve presented a zigzag shape, where the peaks and valleys were the location points of the I-fiber break. It was also found that for the reinforced laminated composite without an I-fiber head, the delamination failure was manifested as resin cracking and I-fiber pullout, while for the I-fiber with a certain head length, the I-fiber failure mechanism was brittle fracture. I-fiber with a certain head length could significantly improve the interlayer performance of the composite. In addition, DCB experiments also revealed that the implantation matrix had little effect on the interlayer performance of I-fiber reinforced composites, and the failure load value and the I-fiber implantation volume showed an obvious proportional relationship.

Funder

Tianjin Higher Education Innovation Team Project

Tianjin Science and Technology Commission

Natural Science Foundation of Tianjin City

Scientific Research Project of Tianjin Education Commission

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3