Evaluating the biomechanical interaction between the medical compression stocking and human calf using a highly anatomical fidelity three-dimensional finite element model

Author:

Lu Yongtao123ORCID,Zhang Daxing1,Cheng Liangliang4,Yang Zhuoyue1,Junyan Li 5

Affiliation:

1. Department of Engineering Mechanics, Dalian University of Technology, China

2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China

3. DUT-BSU Joint Institute, Dalian University of Technology, China

4. Affiliated Zhongshan Hospital of Dalian University, China

5. School of Science and Technology, Middlesex University, UK

Abstract

The beneficial effects of the medical compression stocking (MCS) in the treatment of venous disorders of the human lower limb have been recognized. However, the effectiveness of the MCS on the internal tissues of the lower limb has not been properly evaluated. The aim of the present study was to shed light on the mechanism of compression therapy using a highly anatomical fidelity three-dimensional finite element (FE) model. A FE calf model of a 40-year-old female was created from magnetic resonance images, in which the bones, the muscle groups, three veins (the great saphenous vein, medial peroneal vein and small saphenous vein), the subcutaneous tissues (fascia) and the skin were reconstructed. The model was validated using experimental data collected in-house, and then the influence of different levels of external compression and the biomechanical effect of the MCS under the pathological conditions were investigated. The results showed that the pressure at the skin–stocking interface was largely influenced by the external compression pressure with an increase of up to 54.98%, while the pressure was neither influenced by the impairment of the muscular tissues nor by the impairment of the calf veins, with the largest change of just 5.63%. The trans-mural pressure was increased more by the impairment of the calf veins than by the impairment of the muscular tissues. The volume reductions in the calf veins were not evenly distributed. The present study provides some guidance on compression therapy.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3