A neural network algorithm and its prediction model towards the full color phase mixing process of colored fibers

Author:

Sun Xianqiang1ORCID,Xue Yuan1ORCID,Liu Yuexing2,Wang Liqiang2,Liu Lixia2

Affiliation:

1. Jiangnan University, School of Textile Science and Engineering, Wuxi, China

2. Yuyue Home Textile Ltd., Binzhou, China

Abstract

Aiming at the demand of color matching techniques in the spinning process, a neural network prediction model is constructed in this research study, and the gridded full color phase mixing space of colored fibers is used as the sample space. Subsequently, 30 grid points are employed as training samples, while another 30 grid points are adopted as testing samples, in which the parameters of the input, hidden, and output layers are optimized. Additionally, the neural network prediction model is constructed by training samples, and validated by testing samples. Lastly, a neural network prediction model is applied to implement the prediction of color and mixing ratios for any point within the full color phase mixing model. Through the assessment of the testing samples, the predicted results for the colors of the grid point samples showed an average color difference of 1.29 (minimum was 0.22 and maximum was 2.97); the forecasts for the mixing ratios of the colored fibers were that the range of the mean absolute error for the mixing ratios of individual samples was from 0.01% to 0.18%, and the mean absolute error for the mixing ratios of all samples was 0.21%. The experimental results indicated that the proposed neural network model has a relatively advanced prediction accuracy.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3