Experimental investigation for reverse heat transfer in structural fire-protective clothing

Author:

Lee Duck Weon1,Jin Joon-Hyung2,Kim Eunae3,Lee Junghan4

Affiliation:

1. Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, Korea

2. National Institute for Nanomaterial Technology, POSTECH 77, Cheongam-ro, Nam-gu, Phohang, Gyeongbuk, Korea

3. Department of Clothing & Textiles, Yonsei University, Seoul, Republic of Korea

4. Nanomedicinal research laboratory, Inha University School of Medicine, Jung-gu, Incheon, Korea

Abstract

Structural fire-protective clothing must be effective at minimizing the thermal effects of fire. However, water remaining on the outer shell might play an important role in conducting heat transfer, which causes skin burns in a firefighter when he douses a fire with water through a hose. Therefore, this research demonstrated the difference in the heat transfer and humidity created by the remaining water or lack of water on the outer shell under a condition in which the temperature (45 ± 1℃) of the external environment was higher than that of the skin. Two types of multilayered systems, which simulated real fire-protective clothing (outer shell, moisture barrier, thermal liner) were tested by using a human–clothing–environment (HCE) simulator. The experimental results verified that water on the outer shell increased the microclimate temperature in the structural fire-protective clothing. In particular, we assume that air permeability in the outer shell can be an important factor to control heat and mass transfer within the microclimate.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The relation between body surface angle and apparel ease distribution under the motion state;International Journal of Clothing Science and Technology;2023-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3