Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles

Author:

Wu Yunping1,Yang Yan1,Zhang Zhijie12,Wang Zhihua3,Zhao Yanbao1,Sun Lei1ORCID

Affiliation:

1. Engineering Research Center for Nanomaterials, Henan University, China

2. Ministry of Education Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science and Engineering, and Institute of for Advanced Study, Tongji University, China

3. College of Chemistry and Chemical Engineering, Henan University, China

Abstract

In this paper, we propose a facile and mild route to prepare size-tunable silver nanoparticles (Ag NPs) and their finishing application on fabrication of antibacterial cotton fabrics. The as-prepared Ag NPs, with an average particles size of 2.3 nm, show the minimal inhibitory concentration of 7.8 µg/mL and the minimum bactericidal concentration of 15.6 µg/mL, respectively. In this study, sodium citrate served as a stabilizing agent to prevent Ag NP agglomeration in the synthesis process, and citric acid acted as a binder to fix Ag NPs on the cotton fabrics through chemical bonds in the finishing process. The results of Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy (UV-vis), X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy demonstrate that Ag NPs have been fixed and well dispersed on the cotton fabric surface. Ag contents in the hybrid fabrics were measured by the techniques of inductively coupled plasma atomic emission spectroscopy and UV-vis, and the antibacterial properties of hybrid fabrics were tested by the shake flask and agar diffusion plate method. It is found that the Ag NP coated cotton fabrics exhibit excellent antimicrobial activities against both the Gram-negative bacterium of Escherichia coli (E. coli) and the Gram-positive bacterium of Staphylococcus aureus ( S. aureus). The percentages of reduction bacteria remain at 91.8% and 98.7% for S. aureus and E. coli, respectively, even after 50 cycles of consecutive laundering, which indicates that the antibiotic performance of the as-fabricated hybrid fabrics is also durable.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3