The review of fiber-based sound-absorbing structures

Author:

Zhang Chunchun1,Li Huiqin1,Gong Jixian1ORCID,Chen Jiahao1,Li Zheng1,Li Qiujin1,Cheng Meilin1,Li Xin1,Zhang Jianfei123

Affiliation:

1. Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, China

2. Collaborative Innovation Center for Eco-Textiles of Shandong Province, China

3. National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, China

Abstract

According to the World Health Organization, noise pollution is second only to air pollution in its impact on health and the environment. Fiber-based sound-absorbing structures have great application potential in the field of sound absorption and noise reduction because they can provide a wider sound absorption range than traditional porous fiber materials, and at the same time have the advantages of light weight, low cost and strong processability. Consequently, significant research interest in the field of noise control has been directed into the study of composite sound-absorbing materials based on porous fiber materials. In this review, we have summarized manifold theoretical structures based on fiber materials, such as multilayer structure, porous micro/nano structure, membrane sound-absorbing structure and perforated resonance structure of fiber-based sound-absorbing structures, aiming to illustrate that the structure must affect the sound absorption performance of the material. The focus is on the research and development of the design concepts, and preparation methods of fiber-based acoustic structures are reviewed. Finally, this review concludes with the prospects and outlook for fiber-based acoustic structures. We hope that this article which reviews the structure design principle and preparation method of fiber-based sound-absorbing structures can give inspirations for readers.

Funder

Tianjin Research and Innovation Project for Postgraduate

the National Key Research and Development Project Foundation of China

Tianjin Natural Science Foundation

Science and Technology Guidance Project of China National Textile and Apparel Council

The Xinjiang Autonomous Region Major Significant Project Foundation

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3