Investigation of temperature-responsive and thermo-physiological comfort of modified polyester fabric with Sericin/PNIPAAm/Ag NPs interpenetrating polymer network hydrogel

Author:

Liu Jinru1,He Hualing123,Yu Zhicai1ORCID,Suryawanshi Abhijeet1,Li Yongquan1,Lin Xuebo1,Sun Zenghui1

Affiliation:

1. Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Department of Chemistry and Chemical Engineering, Wuhan Textile University, China

2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, China

3. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, China

Abstract

Stimuli-responsive polymers applied to traditional textiles have received widespread attention. In this work, a new type of polymer-modified polyester fabric was prepared with interpenetrating polymer network (IPN) hydrogel. The IPN hydrogel comprised of poly (N-isopropylacrylamide) (PNIPAAm), silk sericin (SS), and silver nanoparticles (Ag NPs). The presence of the IPN hydrogel on the surface of fibers can change the wettability of polyester fabric, in response to temperature. The thermal behavior of IPN hydrogel was characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). DSC results indicated that the IPN hydrogel exhibits temperature-responsive behavior and the lower critical solution temperature (LCST) was around 32.9℃. The decomposition temperature of modified polyester fabric (400.5℃) was better than the original polyester fabric (335℃). TG results indicated that the polymer-modified fabric possessed higher thermal stability than the original polyester fabrics. The thermo-physiological comfort of modified polyester fabric was characterized by water contact angle and vertical wicking test. Above the LCST, the wettability of the polymer-modified polyester fabric would decrease because of the volume phase transition of IPN hydrogel. Moreover, the antibacterial activity of the modified temperature-sensitive fabric against Staphylococcus aureus and Escherichia coli was also investigated, and the antibacterial activity for both microorganisms exceeded 95%. This study provided a feasible route to fabricate the temperature-responsive textile with great antibacterial performance.

Funder

Opening Project of Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province

undergraduate innovation and entrepreneurship training program from Hubei Province

Opening Project of Key Laboratory of High Performance fibers and products

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3