Analyzing the Prevalence of Depression and Its Influencing Factors in Elderly Patients With Obstructive Sleep Apnea: A Machine Learning Approach

Author:

Qin Shuhong1,Zheng Zhanhang1,Li Ruilin1ORCID,Wu Chenxingzi1,Wang Wenjuan1

Affiliation:

1. Guangxi University of Chinese Medicine, Nanning, Guangxi, China

Abstract

Objective: Depressive symptoms are prevalent and detrimental in elderly patients with obstructive sleep apnea (OSA). Understanding the factors influencing these symptoms is crucial. This study aims to use machine learning algorithms to identify the contributing factors in this population. Method: The National Health and Nutrition Examination Survey database provided the data for this study. The study includes elderly patients who are eligible for diagnostic evaluation for OSA. Logistic regression was used to screen their influencing factors, and random forest (RF), extreme gradient boosting (XGB), artificial neural network (ANN), and support vector machine (SVM) were utilized to 4 algorithms were used to construct depressive symptoms classification models, and the best model performance was selected for feature importance ranking. Influential factors included demographics (age, gender, education, etc.), chronic disease status (diabetes, hypertension, etc.), and laboratory findings (white blood cells, C-reactive protein, cholesterol, etc.). Result: Ultimately, we chose 1538 elderly OSA patients for the study, out of which 528 (34.4%) suffered from depressive symptoms. Logistic regression initially identified 17 influencing factors and then constructed classification models based on those 17 using RF, XGB, ANN, and SVM. We selected the best-performing SVM model [area under the curve (AUC) = 0.746] based on the AUC values of 0.73, 0.735, 0.742, and 0.746 for the 4 models. We ranked the variables in order of importance: General health status, sleep disorders, gender, frequency of urinary incontinence, liver disease, physical activity limitations, education, moisture, eosinophils, erythrocyte distribution width, and hearing loss. Conclusion: Elderly OSA patients experience a high incidence of depressive symptoms, influenced by various objective and subjective factors. The situation is troubling, and healthcare institutions and policymakers must prioritize their mental health. We should implement targeted initiatives to improve the mental health of high-risk groups in multiple dimensions.

Funder

Guangxi Zhuang Autonomous Region Education Department, China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3