Using multiple imputation to classify potential outcomes subgroups

Author:

Li Yun123ORCID,Bondarenko Irina3,Elliott Michael R34,Hofer Timothy P56,Taylor Jeremy MG3

Affiliation:

1. Division of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA

2. Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA

3. Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA

4. Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA

5. Division of General Medicine, University of Michigan, Ann Arbor, MI, USA

6. VA Health Service Research & Development Center for Clinical Management Research, Ann Arbor, MI, USA

Abstract

With medical tests becoming increasingly available, concerns about over-testing, over-treatment and health care cost dramatically increase. Hence, it is important to understand the influence of testing on treatment selection in general practice. Most statistical methods focus on average effects of testing on treatment decisions. However, this may be ill-advised, particularly for patient subgroups that tend not to benefit from such tests. Furthermore, missing data are common, representing large and often unaddressed threats to the validity of most statistical methods. Finally, it is often desirable to conduct analyses that can be interpreted causally. Using the Rubin Causal Model framework, we propose to classify patients into four potential outcomes subgroups, defined by whether or not a patient’s treatment selection is changed by the test result and by the direction of how the test result changes treatment selection. This subgroup classification naturally captures the differential influence of medical testing on treatment selections for different patients, which can suggest targets to improve the utilization of medical tests. We can then examine patient characteristics associated with patient potential outcomes subgroup memberships. We used multiple imputation methods to simultaneously impute the missing potential outcomes as well as regular missing values. This approach can also provide estimates of many traditional causal quantities of interest. We find that explicitly incorporating causal inference assumptions into the multiple imputation process can improve the precision for some causal estimates of interest. We also find that bias can occur when the potential outcomes conditional independence assumption is violated; sensitivity analyses are proposed to assess the impact of this violation. We applied the proposed methods to examine the influence of 21-gene assay, the most commonly used genomic test in the United States, on chemotherapy selection among breast cancer patients.

Funder

National Cancer Institute

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3