Flexible survival regression modelling

Author:

Cortese Giuliana1,Scheike Thomas H2,Martinussen Torben3

Affiliation:

1. Department of Statistical Sciences, University of Padova, Via Cesare Battisti 241/243, 35121 Padova, Italy,

2. Department of Biostatistics, University of Copenhagen, Øster Farimagsgade 5B, P.O.B. 2099, DK-1014 Copenhagen K, Denmark

3. Department of Biostatistics, University of Southern Denmark, J. B. Winsløvsvej 9 B, DK-5000 Odense, Denmark

Abstract

Regression analysis of survival data, and more generally event history data, is typically based on Cox’s regression model. We here review some recent methodology, focusing on the limitations of Cox’s regression model. The key limitation is that the model is not well suited to represent time-varying effects. We start by considering classical and also more recent goodness-of-fit procedures for the Cox model that will reveal when the Cox model does not capture important aspects of the data, such as time-varying effects. We present recent regression models that are able to deal with and describe such time-varying effects. The introduced models are all applied to data on breast cancer from the Norwegian cancer registry, and these analyses clearly reveal the shortcomings of Cox’s regression model and the need for other supplementary analyses with models such as those we present here.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3