Approximate Bayesian computation design for phase I clinical trials

Author:

Jin Huaqing1ORCID,Du Wenbin1ORCID,Yin Guosheng1ORCID

Affiliation:

1. Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong

Abstract

In the development of new cancer treatment, an essential step is to determine the maximum tolerated dose in a phase I clinical trial. In general, phase I trial designs can be classified as either model-based or algorithm-based approaches. Model-based phase I designs are typically more efficient by using all observed data, while there is a potential risk of model misspecification that may lead to unreliable dose assignment and incorrect maximum tolerated dose identification. In contrast, most of the algorithm-based designs are less efficient in using cumulative information, because they tend to focus on the observed data in the neighborhood of the current dose level for dose movement. To use the data more efficiently yet without any model assumption, we propose a novel approximate Bayesian computation approach to phase I trial design. Not only is the approximate Bayesian computation design free of any dose–toxicity curve assumption, but it can also aggregate all the available information accrued in the trial for dose assignment. Extensive simulation studies demonstrate its robustness and efficiency compared with other phase I trial designs. We apply the approximate Bayesian computation design to the MEK inhibitor selumetinib trial to demonstrate its satisfactory performance. The proposed design can be a useful addition to the family of phase I clinical trial designs due to its simplicity, efficiency and robustness.

Funder

Research Grants Council, University Grants Committee

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3