Affiliation:
1. Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
2. Department of Statistics, The Wharton School, University of Pennsylvania, PA, USA
Abstract
Instrumental variable analysis is an approach for obtaining causal inferences on the effect of an exposure (risk factor) on an outcome from observational data. It has gained in popularity over the past decade with the use of genetic variants as instrumental variables, known as Mendelian randomization. An instrumental variable is associated with the exposure, but not associated with any confounder of the exposure–outcome association, nor is there any causal pathway from the instrumental variable to the outcome other than via the exposure. Under the assumption that a single instrumental variable or a set of instrumental variables for the exposure is available, the causal effect of the exposure on the outcome can be estimated. There are several methods available for instrumental variable estimation; we consider the ratio method, two-stage methods, likelihood-based methods, and semi-parametric methods. Techniques for obtaining statistical inferences and confidence intervals are presented. The statistical properties of estimates from these methods are compared, and practical advice is given about choosing a suitable analysis method. In particular, bias and coverage properties of estimators are considered, especially with weak instruments. Settings particularly relevant to Mendelian randomization are prioritized in the paper, notably the scenario of a continuous exposure and a continuous or binary outcome.
Subject
Health Information Management,Statistics and Probability,Epidemiology
Cited by
1026 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献