Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype

Author:

Guo Fuyu1,Langworthy Benjamin2ORCID,Ogino Shuji1345,Wang Molin1678ORCID

Affiliation:

1. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

2. Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA

3. Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA

4. Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,USA

5. Broad Institute of MIT and Harvard, Cambridge, MA, USA

6. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA

7. Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA,USA

8. Harvard Medical School, Boston, MA, USA

Abstract

Identifying and distinguishing risk factors for heterogeneous disease subtypes has been of great interest. However, missingness in disease subtypes is a common problem in those data analyses. Several methods have been proposed to deal with the missing data, including complete-case analysis, inverse-probability weighting, and multiple imputation. Although extant literature has compared these methods in missing problems, none has focused on the competing risk setting. In this paper, we discuss the assumptions required when complete-case analysis, inverse-probability weighting, and multiple imputation are used to deal with the missing failure subtype problem, focusing on how to implement these methods under various realistic scenarios in competing risk settings. Besides, we compare these three methods regarding their biases, efficiency, and robustness to model misspecifications using simulation studies. Our results show that complete-case analysis can be seriously biased when the missing completely at random assumption does not hold. Inverse-probability weighting and multiple imputation estimators are valid when we correctly specify the corresponding models for missingness and for imputation, and multiple imputation typically shows higher efficiency than inverse-probability weighting. However, in real-world studies, building imputation models for the missing subtypes can be more challenging than building missingness models. In that case, inverse-probability weighting could be preferred for its easy usage. We also propose two automated model selection procedures and demonstrate their usage in a study of the association between smoking and colorectal cancer subtypes in the Nurses’ Health Study and Health Professional Follow-Up Study.

Funder

National Institutes of Health

Dana-Farber Cancer Institute

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3