Partly linear single-index cure models with a nonparametric incidence link function

Author:

Lee Chun Yin1ORCID,Wong Kin Yau12ORCID,Bandyopadhyay Dipankar3ORCID

Affiliation:

1. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong

2. Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China

3. Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA

Abstract

In cancer studies, it is commonplace that a fraction of patients participating in the study are cured, such that not all of them will experience a recurrence, or death due to cancer. Also, it is plausible that some covariates, such as the treatment assigned to the patients or demographic characteristics, could affect both the patients’ survival rates and cure/incidence rates. A common approach to accommodate these features in survival analysis is to consider a mixture cure survival model with the incidence rate modeled by a logistic regression model and latency part modeled by the Cox proportional hazards model. These modeling assumptions, though typical, restrict the structure of covariate effects on both the incidence and latency components. As a plausible recourse to attain flexibility, we study a class of semiparametric mixture cure models in this article, which incorporates two single-index functions for modeling the two regression components. A hybrid nonparametric maximum likelihood estimation method is proposed, where the cumulative baseline hazard function for uncured subjects is estimated nonparametrically, and the two single-index functions are estimated via Bernstein polynomials. Parameter estimation is carried out via a curated expectation-maximization algorithm. We also conducted a large-scale simulation study to assess the finite-sample performance of the estimator. The proposed methodology is illustrated via application to two cancer datasets.

Funder

Foundation for the National Institutes of Health

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3