Analysis of crossover designs for longitudinal binary data with ignorable and nonignorable dropout

Author:

Wang Xi1ORCID,Chinchilli Vernon M.1

Affiliation:

1. Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA

Abstract

Longitudinal binary data in crossover designs with missing data due to ignorable and nonignorable dropout is common. This paper evaluates available conditional and marginal models and establishes the relationship between the conditional and marginal parameters with the primary objective of comparing the treatment mean effects. We perform extensive simulation studies to investigate these models under complete data and the selection models under missing data with different parametric distributions and missingness patterns and mechanisms. The generalized estimating equations and the generalized linear mixed-effects models with pseudo-likelihood estimation are advocated for valid and robust inference. We also propose a controlled multiple imputation method as a sensitivity analysis of the missing data assumption. Lastly, we implement the proposed models and the sensitivity analysis in two real data examples with binary data.

Funder

National Heart, Lung and Blood Institute

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3