Affiliation:
1. School of Data Science, Fudan University, Shanghai, China
2. Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
Abstract
Immunotherapy, gene therapy or adoptive cell therapies, such as the chimeric antigen receptor+ T-cell therapies, have demonstrated promising therapeutic effects in oncology patients. We consider statistical designs for dose-finding adoptive cell therapy trials, in which the monotonic dose–response relationship assumed in traditional oncology trials may not hold. Building upon a previous design called “TEPI”, we propose a new dose finding method – Probability Intervals of Toxicity and Efficacy (PRINTE), which utilizes toxicity and efficacy jointly in making dosing decisions, does not require a pre-elicited decision table and at the same time can handle Ockham’s razor properly in the statistical inference. We show that optimizing the joint posterior expected utility of toxicity and efficacy under a 0–1 loss is equivalent to maximizing the marginal model posterior probability in the two-dimensional probability space. An extensive simulation study under various scenarios are conducted and results show that PRINTE outperforms existing designs in the literature since it assigns more patients to optimal doses and less to toxic ones, and selects optimal doses with higher percentages. The simple and transparent features together with good operating characteristics make PRINTE an improved design for dose-finding trials in oncology trials.
Funder
Shanghai Science and Technology Commission
Subject
Health Information Management,Statistics and Probability,Epidemiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献