Flexible joint model for time-to-event and non-Gaussian longitudinal outcomes

Author:

Doms Hortense1ORCID,Lambert Philippe12ORCID,Legrand Catherine1

Affiliation:

1. Institut de Statistique, Biostatistique et Sciences Actuarielles, Université catholique de Louvain, Louvain-la-Neuve, Belgium

2. Institut de Mathématiques, Université de Liège, Liège, Belgium

Abstract

In medical studies, repeated measurements of biomarkers and time-to-event data are often collected during the follow-up period. To assess the association between these two outcomes, joint models are frequently considered. The most common approach uses a linear mixed model for the longitudinal part and a proportional hazard model for the survival part. The latter assumes a linear relationship between the survival covariates and the log hazard. In this work, we propose an extension allowing the inclusion of nonlinear covariate effects in the survival model using Bayesian penalized B-splines. Our model is valid for non-Gaussian longitudinal responses since we use a generalized linear mixed model for the longitudinal process. A simulation study shows that our method gives good statistical performance and highlights the importance of taking into account the possible nonlinear effects of certain survival covariates. Data from patients with a first progression of glioblastoma are analysed to illustrate the method.

Funder

Fédération Wallonie-Bruxelles

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3