Reduction of recruitment costs in preclinical AD trials: validation of automatic pre-screening algorithm for brain amyloidosis

Author:

Ansart Manon12ORCID,Epelbaum Stéphane123,Gagliardi Geoffroy13,Colliot Olivier1234,Dormont Didier124,Dubois Bruno13,Hampel Harald1356,Durrleman Stanley12,

Affiliation:

1. Institut du Cerveau et de la Moelle épinière, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Université, Paris, France

2. Inria, Aramis project-team, Paris, France

3. Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, Paris, France

4. AP-HP, Pitié-Salpêtrière hospital, Department of Neuroradiology, Paris, France

5. AXA Research Fund & Sorbonne University Chair, Paris, France

6. Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France

Abstract

We propose a method for recruiting asymptomatic Amyloid positive individuals in clinical trials, using a two-step process. We first select during a pre-screening phase a subset of individuals which are more likely to be amyloid positive based on the automatic analysis of data acquired during routine clinical practice, before doing a confirmatory PET-scan to these selected individuals only. This method leads to an increased number of recruitments and to a reduced number of PET-scans, resulting in a decrease in overall recruitment costs. We validate our method on three different cohorts, and consider five different classification algorithms for the pre-screening phase. We show that the best results are obtained using solely cognitive, genetic and socio-demographic features, as the slight increased performance when using MRI or longitudinal data is balanced by the cost increase they induce. We show that the proposed method generalizes well when tested on an independent cohort, and that the characteristics of the selected set of individuals are identical to the characteristics of a population selected in a standard way. The proposed approach shows how Machine Learning can be used effectively in practice to optimize recruitment costs in clinical trials.

Funder

Pfizer

Foundation Plan-Alzheimer

AVID/Lilly

Institut Hospitalo-Universitaire and Institut du Cerveau et de la Moelle Epinière

Institut du Cerveau et de la Moelle Epinière

Alzheimer's Disease Neuroimaging Initiative

Institut National de la Santè et de la Recherche Mèdicale

Investissement d'avenir

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3