Matching of Pre- and Postsynaptic Specializations during Synaptogenesis

Author:

Lardi-Studler Barbara,Fritschy Jean-Marc1

Affiliation:

1. Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland,

Abstract

Formation of chemical synapses in the central nervous system is a highly regulated, multistep process that requires bidirectional communication across the synaptic cleft. Neurotransmitter receptors, scaffolding proteins, and signaling molecules need to be concentrated in the postsynaptic density, a specialized membrane microdomain apposed to the active zone of presynaptic terminals, where transmitter release occurs. This precise, synapse-specific matching implicates that sorting and targeting mechanisms exist for the molecular constituents of different types of synapses to ensure correct formation of neuronal circuits in the brain. There is considerable evidence from in vitro and in vivo studies that neurotransmitter signaling is not required for proper sorting during synapse formation, whereas active neurotransmission is essential for long-term synapse maintenance. Here, the authors review recent studies on the role of cell adhesion molecules in synaptogenesis and on possible mechanisms ensuring correct matching of pre- and postsynaptic sites. They discuss the role of neurotransmitter receptors and scaffolding proteins in these processes, focusing on fundamental differences between synapse formation during development and synapse maintenance and plasticity in adulthood. NEUROSCIENTIST 13(2): formation during 115—126, 2007. D

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3