Synaptic Vesicle Reuse and Its Implications

Author:

Kavalali Ege T.1

Affiliation:

1. Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas,

Abstract

Presynaptic nerve terminals are exquisite vesicle trafficking machines. Neurotransmission is sustained by constant recycling of a handful of vesicles. Therefore, the rate and the pathway of vesicle trafficking can critically determine synaptic efficacy during activity. However, it is yet unclear whether synaptic vesicle recycling becomes rate limiting on a rapid time scale during physiologically relevant forms of activity in the brain. Several forms of synaptic plasticity arise from persistent alterations in the dynamics of vesicle trafficking in presynaptic terminals. What makes presynaptic forms of plasticity particularly interesting is that they not only increase or decrease the amplitude of synaptic responses but also cause frequency-dependent changes in neurotransmission. In this manner, plasticity can alter the information coding in neural circuits beyond simple scaling of synaptic responses. However, studying the synaptic vesicle cycle beyond exocytosis and endocytosis has been difficult. In the past decade, several methods have been developed to infer vesicles’ trajectory during their cycle in the synapse. Nevertheless, several questions remain. A better understanding of the role of synaptic vesicle trafficking in neurotransmission will require novel approaches that either combine existing methods or the development of new methods to trace vesicles during their cycle. Recent evidence suggests that various presynaptic proteins involved in the synaptic function and homeostasis are either mutated or altered in their expression in several neurological and psychiatric disorders. Therefore, elucidation of the mechanisms that underlie the synaptic vesicle cycle may reveal novel therapeutic targets for brain disorders.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3