REVIEW ■ : Molecular Basis of Congenital Myasthenic Syndromes: Mutations in the Acetylcholine Receptor

Author:

Engel Andrew G.1,Ohno Kinji1,Wang Hai-Long2,Milone Margherita1,Sine Steven M.2

Affiliation:

1. Muscle Research Laboratory and Department of Neurology, Mayo Clinic and Mayo Foundation Rochester, Minnesota

2. Department of Physiology and Biophysics and Receptor Biology Laboratory Mayo Clinic and Mayo Foundation Rochester, Minnesota

Abstract

The congenital myasthenic syndromes include end-plate (EP) acetylcholinesterase deficiency, presynaptic abnormalities affecting the evoked release or size of transmitter quanta, and acetylcholine (ACh) receptor (AChR) channelopathies stemming from a kinetic abnormality and/or deficiency of AChR. A kinetic abnor mality predicts, and AChR deficiency may predict, one or more mutations in an AChR subunit gene. These clues have led to the identification of 53 mutations in different subunits of AChR in 55 kinships of the congenital myasthenic syndromes. The mutations either increase or decrease the response to ACh, produce AChR deficiency, or both. In the slow-channel syndromes, prolonged opening episodes of AChR cause cationic overloading of the EP and an EP myopathy; the mutations occur in different subunits and different domains of the subunits and have dominant positive effects. The M1 and M2 mutations slow channel closure, increase apparent affinity for ACh, and variably enhance desensitization, and the extracellular αG153S enhances affinity for ACh, promoting reopening of the diliganded receptor. In the low-affinity fast-channel syndrome, εP121L reduces affinity for ACh and reopening of the diliganded receptor, resulting in a de creased response to ACh and shorter burst durations. Severe EP AChR deficiency results from heterozy gous or homozygous mutations that terminate translation prematurely; these are concentrated in the ε subunit, probably because substitution of the fetal γ for the adult ε subunit can rescue the phenotype from fatal null mutations in ε. Variable AChR deficiency and variable functional abnormalities stem from hetero allelic nonsense and missense mutations in AChR subunit genes. NEUROSCIENTIST 4:185-194, 1998

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. “Too Soon on Earth”: A Biophilosophical Model of Schizophrenia. Some Implications for Humanoid Robots;Advances in Bioscience and Biotechnology;2023

2. Eyelid and Facial Nerve Disorders;Liu, Volpe, and Galetta's Neuro-Ophthalmology;2019

3. Neuromuscular Disorders;2017

4. Congenital Myasthenic Syndromes in 2012;Current Neurology and Neuroscience Reports;2011-10-14

5. Eyelid and facial nerve disorders;Neuro-Ophthalmology;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3