Compensation of welding shrinkage in ship production by integrating computer-aided design and computer-aided engineering in a design for assembly technique

Author:

Heo Heeyoung12,Chung Hyun1,Park Junggoo2,Won Seokhee2

Affiliation:

1. Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea

2. Institute of Industrial Technology, SAMSUNG Heavy Industries, Geoje, Republic of Korea

Abstract

Welding is the primary joining process in ship production and inherently causes shrinkage and angular distortion that degrade the dimensional quality (adherence to tolerance specifications) of ship blocks during assembly. Considering that intermediate products of low quality are not scrapped but must be reworked, the productivity of each workstation greatly depends on the dimensional quality of these intermediate products. One of the major “design for assembly” methodologies to control welding shrinkage in shipbuilding is a shrinkage compensation design. This allows the artificial redesign of nominally shaped pieces of plate, to include optimal expansion values that accommodate welding shrinkage. This minimizes the amount of reworking caused by degraded dimensional quality. This research presents a new shrinkage compensation design methodology and technique combining computer-aided design with computer-aided engineering, which overcomes the shortcomings of the empirical approach used until now. An optimization procedure is proposed, by which to find the best shrinkage compensation design shape on the basis of the object function, which would minimize total rework cost (due to shrinkage) predicted for the next block-to-block assembly. The proposed design scheme was successfully applied to shipyard production design and was found to enhance the dimensional quality, as well as the productivity, of shipbuilding.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3