Investigation on innovative pile head breakwater for coastal protection

Author:

Sathyanarayana Arunakumar Hunasanahally1ORCID,Suvarna Praveen S.1,Umesh Pruthviraj1,Shirlal Kiran G1

Affiliation:

1. Department of Water Resources and Ocean Engineering, NITK Surathkal, Karnataka, India

Abstract

Coastal erosion is a global concern that has been augmenting due to the natural evolution of beaches, human activities and sea-level rise. One of the eco-friendly shore protection methods is to dissipate the wave energy by constructing offshore breakwaters. Conical pile head breakwater (CPHB) is one of the eco-friendly innovative offshore structures consisting of closely spaced piles with an enlarged cross-sectional area (conical pile head) in the vicinity of the free surface. In the present study, perforations are incorporated over the conical pile head to achieve higher efficiency by promoting energy dissipation. The influence of the perforations on the performance characteristics, namely wave transmission (Kt), wave reflection (Kr) and energy dissipation (Kd) of the perforated CPHB is comprehensively investigated through physical model studies. The effect of perforations and their distribution around the pile head (Pa), percentage of perforation (P) and size of perforations (S/D) on the wave attenuation characteristics are evaluated to arrive at an optimum configuration. The study is carried out under monochromatic waves of varying wave height (0.06–0.16 m) and wave period (1.4–2 s) at different depths of water (0.35, 0.40 and 0.45 m). A minimum Kt of 0.58 associated with Kr of 0.26 and Kd of 0.78 is obtained with an optimum configuration of Pa = 50%, P = 19.2% and S/D = 0.25. The Kt of the proposed CPHB is about 19 to 35% lesser than that of the perforated hollow pile breakwater under matching test conditions. Overall, providing the perforations is found to be effective in enhancing the wave attenuation capability by up to 12.4%. Further, empirical equations are formulated and validated with the experimental data. The empirical equations estimate the Kt and Kr values accurately with a high coefficient of determination ( R2 ≥ 0.90).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3