Simplified dynamic analysis of stepped thickness rectangular plate structures by the assumed mode method

Author:

Cho Dae-Seung1,Kim Byung Hee2,Kim Jin-Hyeong3,Vladimir Nikola4,Choi Tae-Muk3

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, Korea

2. Marine Research Institute, Samsung Heavy Industries Co., Ltd, Geoje, Korea

3. Createch Co., Ltd, Busan, Korea

4. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia

Abstract

In this article, the assumed mode method is applied to simplified dynamic analysis of stepped thickness rectangular Mindlin plates and stiffened panels with arbitrary boundary conditions. The natural and frequency responses of stepped thickness plate structures subjected to harmonic point excitation force and enforced acceleration at boundaries, respectively, are considered. Potential and kinetic energies of the system are formulated and used to derive eigenvalue problem utilizing Lagrange’s equation of motion, and mode superposition method is further used for forced response assessment. Characteristic orthogonal polynomials having the property of Timoshenko beam functions are used for the assumed modes. Numerical examples analysing vibration of stepped thickness plate structures with different topologies and various sets of boundary conditions are provided. Numerical results are compared with the results from the relevant literature and finite element solutions obtained by a general finite element tool, and a very good agreement is achieved. Hence, it is expected that stepped rectangular plate structures satisfying the prescribed criteria regarding natural and frequency responses can be efficiently designed based on the proposed method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3