A comparative life cycle assessment of marine fuels

Author:

Bengtsson S1,Andersson K1,Fridell E12

Affiliation:

1. Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden

2. IVL Swedish Environmental Research Institute, Gothenburg, Sweden

Abstract

Air emissions from shipping have received attention in recent years and the shipping industry is striving for solutions to reduce their emissions and to comply with stricter regulations. Strategies to reduce emissions can consist of a fuel switch, engine changes, or end-of-pipe technologies, but they do not necessarily imply reduced life cycle emissions. The present paper assesses the environmental performance of marine fuels from well-to-propeller using life cycle assessment (LCA). Four fossil fuels are compared: heavy fuel oil (HFO), marine gas oil, gas-to-liquid (GTL) fuel, and liquefied natural gas (LNG), combined with two exhaust abatement techniques: open-loop scrubber and selective catalytic reduction. LNG and other alternatives that comply with the SECA 2015 and Tier III NO x requirements give decreased acidification and eutrophication potentials with 78–90 per cent in a life cycle perspective compared with HFO. In contrast, the use of LNG does not decrease the global warming potential by more than 8–20 per cent, the amount depending mainly on the magnitude of the methane slip from the gas engine. None of the fossil fuels scrutinized here would decrease the greenhouse gas emissions significantly from a life cycle perspective. The study supports the need for LCA when evaluating the environmental impact of a fuel change, e.g. it is found that the highest global warming potential during the whole life cycle is connected to the alternatives with GTL fuel.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operational-based decarbonization of container ports: The case of Ningbo-Zhoushan Port;International Journal of Sustainable Transportation;2023-12-27

2. Life cycle assessment of ammonia/hydrogen-driven marine propulsion;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-11-18

3. A framework for determining the life cycle GHG emissions of fossil marine fuels in countries reliant on imported energy through maritime transportation: A case study of South Korea;Science of The Total Environment;2023-11

4. Evaluating hydrogen-based electricity generation using the concept of total efficiency;Energy Conversion and Management;2023-10

5. Developing sustainable shipping and maritime transport: Multi-criteria analysis between emission abatement methods;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3