Investigation of the adverse effects of slow steaming operations for ships

Author:

Dere Caglar12ORCID,Zincir Burak1,Inal Omer Berkehan1ORCID,Deniz Cengiz1

Affiliation:

1. Marine Engineering Department, Maritime Faculty, Istanbul Technical University, Istanbul, Turkey

2. Marine Engineering Department, Faculty Naval Architecture and Maritime, Izmir Katip Celebi University, Izmir, Turkey

Abstract

The typical negative effects of prolonged slow steaming operations are investigated in this study. The scope of the research is to examine the effects of the carbon deposit formation on piston rings (lack of sealing function), exhaust boiler (reduction in the heat recovery capacity), turbocharger (lack of scavenging capacity), and injector, due to the prolonged slow steaming operation. It is necessary to identify the holistic adverse effects of the low-load operation on the main engine performance and subsequent components. The study shows that the negative consequences of a long-term slow steaming operation cause noteworthy efficiency degradation in marine diesel engines. The paper aims to clarify the barriers to the efficient operation of marine diesel engines via raising awareness of proper and planned maintenance for sustainable slow steaming. The degradation rates affect the total operational efficiency, CO2 emissions, and fuel consumption. The study results show that the fuel consumption increases by 1.9%, 2.1%, and 1.9% of daily consumption and the corresponding CO2 emission increments are 4.36, 4.29, and 3.48 kg CO2 per nautical mile sailing of the container ship at specified speeds at 65%, 55%, and 45% engine loads, respectively. The efficiency variation leads significant amount of emission increment, while up to 50% decrement will enter into force by April 2022 for container ships. The study gives valuable insight into the increase in CO2 emissions and fuel after long-term slow steaming for the near future with the stricter emission limits. The results provide considerable information about the deterioration effect on the whole energy system and help to estimate potential efficiency levels for marine diesel engines.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Reference50 articles.

1. Environmental and economical assessment of alternative marine fuels

2. A review on air emissions assessment: Transportation

3. IMO. Third IMO Greenhouse Gas study 2014 – executive summary. London: IMO, 2014. pp.1–26.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3