Wave energy converter efficiency based on wave transmission and relative capture width performance

Author:

Türker Umut1ORCID,Boulanoire Souhail1

Affiliation:

1. Department of Civil Engineering, Eastern Mediterranean University, Mersin, Turkey

Abstract

A series of quantitative analyses were performed to identify the wave properties and potential, by means of records collected from an offshore buoy in North-West Ireland. Based on the data collected, a series of quantitative analyses was conducted to determine the dominant wind directions and wave properties on an annual basis. In addition, the wave power is computed based on relevant wave heights and periods, and the Pierson-Moskowitz spectral model was used to generate the maximum wave energy spectra for each year. The results show that waves with wave powers of around 100 kW/m were mostly approaching eastward at a rather narrow frequency. In order to compare the relative capture width and the power absorption capacity of three floating structures, the Wave Dragon, Board Net Breakwater, and Cylindrical Floating Breakwater are analyzed. Also outlined is the impact of the transmission coefficient on the effectiveness of wave energy converters (WEC) throughout the energy harvesting process. This was accomplished by fusing information from three distinct field investigations and experimental research with four different wave transmission coefficient models. The results show that as the wave steepness increases, the transmission coefficient decreases and the hydrodynamic performance of wave energy converters increases. Also, it is found that the hydrodynamic efficiency of wave energy converters is higher in summer than in winter, and the Wave Dragon is the most efficient wave energy converter in regard to relative capture width and power absorption.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3