Electroencephalographic Data Analysis With Visibility Graph Technique for Quantitative Assessment of Brain Dysfunction

Author:

Bhaduri Susmita1,Ghosh Dipak1

Affiliation:

1. Department of Physics, Jadavpur University, Kolkata, India

Abstract

Usual techniques for electroencephalographic (EEG) data analysis lack some of the important properties essential for quantitative assessment of the progress of the dysfunction of the human brain. EEG data are essentially nonlinear and this nonlinear time series has been identified as multi-fractal in nature. We need rigorous techniques for such analysis. In this article, we present the visibility graph as the latest, rigorous technique that can assess the degree of multifractality accurately and reliably. Moreover, it has also been found that this technique can give reliable results with test data of comparatively short length. In this work, the visibility graph algorithm has been used for mapping a time series—EEG signals—to a graph to study complexity and fractality of the time series through investigation of its complexity. The power of scale-freeness of visibility graph has been used as an effective method for measuring fractality in the EEG signal. The scale-freeness of the visibility graph has also been observed after averaging the statistically independent samples of the signal. Scale-freeness of the visibility graph has been calculated for 5 sets of EEG data patterns varying from normal eye closed to epileptic. The change in the values is analyzed further, and it has been observed that it reduces uniformly from normal eye closed to epileptic.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3