Bioelectricity production from fermentable household waste in a dual-chamber microbial fuel cell

Author:

Chatzikonstantinou D1,Tremouli A1,Papadopoulou K1,Kanellos G1,Lampropoulos I1,Lyberatos G12

Affiliation:

1. School of Chemical Engineering, National Technical University of Athens, Zografou Athens, Greece

2. Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece

Abstract

In this study, the use of a dual-chamber microbial fuel cell for the production of bioelectricity from a food residue biomass (FORBI) product was investigated. Food residue biomass was produced by drying and shredding the pre-sorted fermentable fraction of household food waste collected door-to-door in the Municipality of Halandri, Athens, Greece. Different organic loads of food residue biomass expressed as chemical oxygen demand (COD) were examined (0.7, 0.9, 1.4, 2.8, 6 and 14 g COD L−1, respectively). It was observed that an increase of the initial concentration of the final extract resulted in a corresponding increase in the operating time. The microbial fuel cell potential increased from 33.3 mV to 46 mV as the concentration was increased from 0.7 to 14 g COD L−1. The best performance in terms of maximum power density (29.6 mW m−2) corresponding to a current density of 88 mA m−2 was observed for 6 g COD L−1. Setting the external resistance at its optimal value (Rext = 2 kΩ) as determined by polarisation experiments, Pyield drastically increased to 13.7 and 17.3 Joule (g FORBI)−1 in two consecutive cycles. The results demonstrate that readily biodegradable substrates, such as food residue biomass, can be effectively used for enhanced bioelectricity harvesting in a microbial fuel cell.

Funder

Horizon 2020 Framework Programme

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Reference14 articles.

1. Bennetto HP (1984) Microbial Fuel Cells. London: Life Chemistry Reports Harwood Academic, pp.363–453.

2. Food and Agriculture Organization (2012). Towards the future we want: End hunger and make the transition to sustainable agricultural and food systems. Rome: United Nations.

3. Biological fuel cells with sulphide storage capacity

4. Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3