Reuse of hazardous calcium fluoride sludge from the integrated circuit industry

Author:

Zhu Ping1,Cao Zhenbang1,Ye YiLi1,Qian Guangren1,Lu Bo1,Zhou Ming2,Zhou Jin3

Affiliation:

1. College of Environmental and Chemical Engineering, Shanghai University, Shanghai, People’s Republic of China

2. Semiconductor Manufacturing International (Shanghai) Corporation, Shanghai, People’s Republic of China

3. Institute of Microelectronics, Peking University, Beijing, People’s Republic of China

Abstract

The Chinese integrated circuit industry has been transformed from a small state-owned sector into a global competitor, but chip manufacturing produces large amounts of calcium fluoride sludges (CFS). In China, landfill is a current option for treating CFS. In order to solve the problem of unavailable landfill sites and prevent fluorine from dissolved CFS polluting water sources, CFS was tested as a component for a ceramic product made with sodium borate, sodium phosphate and waste alumina using a low-temperature sintering technology, and the effects of various factors on characteristics of the ceramic were investigated to optimize the process. The best sintering temperature was controlled at 700°C, and the optimal raw material ratio of the ceramic was 11% sodium borate, 54% sodium phosphate, 30% CFS and 5% waste alumina. The CFS ceramic was characterized by a morphological structure and X-ray diffraction. The results indicated that CFS was transformed into Na2Ca(PO4)F as an inert and a main crystalline phase in the ceramic, which was enclosed by the borophosphate glass. Toxicity characteristic leaching procedure, corrosion resistance and compressive strength tests verified CFS ceramic as a qualified construction ceramic material, and the fluorine from CFS was solidified in the inert crystalline phase, which would not be released to cause secondary pollution. This novel technology not only avoids the CFS hydrolyzing reaction forming harmful hydrofluoric acid gas at 800°C and above, but also produces high-performance ceramics as a construction material, in accordance with the concept of sustainable development.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3